Preparation \& Standardization of 0.1 N NaOH Solution

Sahar NICณamed Shakir
Assistant Lectu

Rana Adel Kamoon

Ascistant Lector

How could you prepare one liter of $\mathrm{N} / 10 \mathrm{NaOH}$ solution? Knowing that the atomic masss of :
$\mathrm{Na}=23, \mathrm{O}=16$ and $\mathrm{H}=1$.

$$
N=\frac{\text { no. of equivalents }}{\text { Volume (} \mathrm{L} \text {) }}=\frac{\text { Mass / Equivalent mass }}{\text { Volume (L) }}
$$

$$
=\frac{\text { Mass * } 1000}{\text { Eq. mass * } V(\mathrm{ml})}
$$

$$
0.1=\frac{\text { Mass } * 1000}{40 * 1000}
$$

Mass $=4 \mathrm{~g}$ of NaOH .
So, we should weigh 4 g of NaOH , dissolve it in water and make up to the mark of 1 liter volumetric flask.

Standardization of the prepared NaOH solution

Solutions of NaOH are standardized by titration with std. acids of equivalent normality.

Method:

1- Using a bulb pipet, transfer 10 ml of std. HCl soln.to a conical flask. 2- Add 1-2 drops of ph.ph. as an indicator.
3- Fill the burette with the prepared
 NaOH solution.

4- Add NaOH drop by drop into the conical flask until the color of the solution is faint pink.

5- The exact normality of NaOH solution is obtained from the following calculations.

$$
\begin{aligned}
& \mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{~N}_{1} \mathrm{~V}_{1}(\mathrm{NaOH})=\mathrm{N}_{2} \mathrm{~V}_{2}\left(\mathrm{HCl}_{1)}\right.
\end{aligned}
$$

